Electronic Design - From Concept to Reality
By Martin S. Roden, Gordon L. Carpenter and William R. Wieserman
4th Electronic edition
TABLE OF CONTENTS
Chapter 1: | BASIC CONCEPTS |
Chapter 2: | IDEAL OPERATIONAL AMPLIFIERS |
Chapter 3: | SEMICONDUCTOR DIODE CIRCUIT ANALYSIS |
Chapter 4: | BIPOLAR JUNCTION TRANSISTOR CIRCUITS |
Chapter 5: | BIPOLAR JUNCTION TRANSISTOR AMPLIFIERS |
Chapter 6: | FIELD-EFFECT TRANSISTOR AMPLIFIERS |
Chapter 7: | BIAS STABILITY OF TRANSISTOR AMPLIFIERS |
Chapter 8: | POWER AMPLIFIERS AND POWER SUPPLIES |
Chapter 9: | PRACTICAL OPERATIONAL AMPLIFIERS |
Chapter 10: | FREQUENCY BEHAVIOR OF TRANSISTOR AMPLIFIERS |
Chapter 11: | FEEDBACK AND STABILITY |
Chapter 12: | ACTIVE FILTERS |
Chapter 13: | QUASI-LINEAR CIRCUITS |
Chapter 14: | PULSED WAVEFORMS AND TIMING CIRCUITS |
Chapter 15: | DIGITAL LOGIC FAMILIES |
Chapter 16: | DIGITAL INTEGRATED CIRCUITS |
PREFACE INTRODUCTION TO THE STUDENT CHAPTER 1 - BASIC CONCEPTS |
||
1.0 Introduction 1.1 History, 1 1.2 Solid State Circuit Models, 3 1.3 Linear and Nonlinear Circuit Elements, 4 1.4 Analog vs. Digital Signals, 6 1.5 Dependent Sources, 7 1.6 Frequency Effects, 8 1.7 Analysis and Design, 10 |
||
1.7.1 Comparison of Design and Analysis, 10 1.7.2 Origin of Design Requirements, 10 1.7.3 What Do "Open-Ended" and "Trade Off" Mean?, 11 |
||
1.8 Computer Simulations, 13 1.9 Components of the Design Process, 14 |
||
1.9.1 Principles of Design, 15 1.9.2 Problem Definition, 16 1.9.3 Subdividing the Problem, 17 1.9.4 Documentation, 17 1.9.5 The Schematic Diagram, 18 1.9.6 The Parts List, 18 1.9.7 Running Lists and Other Documentation, 19 1.9.8 Using Documents, 20 1.9.9 Design Checklist, 20 1.9.10 Prototyping the Circuit, 21 |
||
Summary, 23 | ||
[ Return to top ] | ||
CHAPTER 2 - IDEAL OPERATIONAL AMPLIFIERS | ||
2.0 Introduction, 24 2.1 Ideal Op-Amps, 25 |
||
2.1.1 Dependent Sources, 25 2.1.2 Operational Amplifier Equivalent Circuit, 27 2.1.3 Analysis Method, 30 |
||
2.2 The Inverting Amplifier, 30 2.3 The Non-Inverting Amplifier, 33 2.4 Input Resistance of Op-Amp Circuits, 41 2.5 Combined Inverting and Non-Inverting Inputs, 44 2.6 Design of Op-Amp Circuits, 46 2.7 Other Op-Amp Applications, 52 |
||
2.7.1 Negative Impedance Circuit, 52 2.7.2 Dependent-Current Generator, 53 2.7.3 Current-to-Voltage Converter, 54 2.7.4 Voltage-to-Current Converter, 55 2.7.5 Inverting Amplifier with Impedances, 56 2.7.6 Analog Computer Applications, 57 2.7.7 Non-Inverting Miller Integrator, 59 |
||
Summary, 60 Problems, 60 |
||
[ Return to top ] | ||
CHAPTER 3 - SEMICONDUCTOR DIODE CIRCUIT ANALYSIS | ||
3.0 Introduction, 70 3.1 Theory of Semiconductors, 71 |
||
3.1.1 Conduction in Materials, 73 3.1.2 Conduction in Semiconductor Materials, 75 3.1.3 Crystalline Structure, 76 3.1.4 Generation and Recombination of Electrons and Holes, 78 3.1.5 Doped Semiconductors, 79 3.1.6 n-type Semiconductor, 80 3.1.7 p-type Semiconductor, 80 3.1.8 Carrier Concentrations, 80 3.1.9 Excess Carriers, 82 3.1.10 Recombination and Generation of Excess Carriers, 82 3.1.11 Transport of Electric Current, 83 3.1.12 Diffusion of Carriers, 83 3.1.13 Drift in an Electric Field, 84 |
||
3.2 Semiconductor Diodes, 87 | ||
3.2.1 Diode Construction, 89 3.2.2 Relationship Between Diode Current and Diode Voltage, 90 3.2.3 Diode Operation, 92 3.2.4 Temperature Effects, 93 3.2.5 Diode Equivalent Circuit Models, 95 3.2.6 Diode Circuit Analysis, 96 Graphical Analysis, 96 Piecewise-Linear Approximation, 99 3.2.7 Power Handling Capability, 103 3.2.8 Diode Capacitance, 104 |
||
3.3 Rectification, 104 | ||
3.3.1 Half-Wave Rectification, 105 3.3.2 Full-Wave Rectification, 106 3.3.3 Filtering, 107 3.3.4 Voltage Doubling Circuit, 110 |
||
3.4 Zener Diodes, 112 | ||
3.4.1 Zener Regulator, 113 3.4.2 Practical Zener Diodes and Percent Regulation, 117 |
||
3.5 Clippers and Clampers, 119 | ||
3.5.1 Clippers, 119 3.5.2 Clampers, 124 |
||
3.6 Op-Amp Circuits Containing Diodes, 127 3.7 Alternate Types of Diodes, 129 |
||
3.7.1 Schottky Diodes, 129 3.7.2 Light-Emitting Diodes (LED), 130 3.7.3 Photo Diodes, 131 |
||
3.8 Manufacturers' Specifications, 132 Summary, 133 Problems, 134 |
||
[ Return to top ] | ||
CHAPTER 4 - BIPOLAR JUNCTION TRANSISTOR CIRCUITS | ||
4.0 Introduction, 149 4.1 Structure of Bipolar Transistors, 149 4.2 Large-Signal BJT Model, 153 4.3 Derivation of Small-Signal ac Models, 154 4.4 Two-Port Small Signal ac Models, 156 4.5 Characteristic Curves, 158 4.6 Manufacturers' Data Sheets for BJTs, 160 4.7 BJT Models for Computer Simulations, 161 4.8 Single-Stage Amplifier Configurations, 164 4.9 Biasing of Single-Stage Amplifiers, 166 4.10 Power Considerations, 169 |
||
4.10.1 Derivation of Power Equations, 170 | ||
4.11 Analysis and Design of Voltage Amplifier Bias Circuits, 172 | ||
4.11.1 Analysis Procedure, 172 4.11.2 Design Procedure, 177 4.11.3 Amplifier Power Sources, 183 4.11.4 Selection of Components, 184 |
||
4.12 Analysis and Design of Current Amplifier Bias Circuits, 184 4.13 Nonlinearities of Bipolar Junction Transistors188 4.14 On-Off Characteristics of BJT Circuits, 190 4.15 Integrated Circuit Fabrication, 192 |
||
4.15.1 Transistor and Diodes, 192 4.15.2 Resistors, 193 4.15.3 Capacitors, 193 4.15.4 Lateral Transistor, 194 |
||
Summary, 194 Problems, 195 |
||
[ Return to top ] | ||
CHAPTER 5 - BIPOLAR JUNCTION TRANSISTOR AMPLIFIERS | ||
5.0 Introduction, 207 5.1 Common-Emitter Amplifier, 208 |
||
5.1.1 Gain Impedance Formula, 208 5.1.2 Input Resistance, Rin, 209 5.1.3 Current Gain, Ai, 210 5.1.4 Voltage Gain, Av, 210 5.1.5 Output Resistance, Ro, 211 |
||
5.2. Common-Emitter with Emitter Resistor (Emitter-Resistor Amplifier), 213 | ||
5.2.1 Input Resistance, Rin, 213 5.2.2 Current Gain, Ai, 215 5.2.3 Voltage Gain, Av, 215 5.2.4 Output Resistance, Ro, 215 |
||
5.3 Common-Collector (Emitter-Follower) Amplifier, 224 | ||
5.3.1 Input Resistance, Rin, 224 5.3.2 Current Gain, Ai, 225 5.3.3 Voltage Gain, Av, 225 5.3.4 Output Resistance, Ro, 226 |
||
5.4 Common-Base Amplifier, 230 | ||
5.4.1 Input Resistance, Rin, 231 5.4.2 Current Gain, Ai, 231 5.4.3 Voltage Gain, Av, 232 5.4.4 Output Resistance, Ro, 232 |
||
5.5 Transistor Amplifier Applications, 236 5.6 Phase Splitter, 237 5.7 Amplifier Coupling, 238 |
||
5.7.1 Capacitive Coupling, 238 5.7.2 Direct Coupling, 238 5.7.3 Transformer Coupling, 241 5.7.4 Optical Coupling, 243 |
||
5.8 Multistage Amplifier Analysis, 245 5.9 Cascode Configuration, 250 5.10 Current Sources and Active Loads, 252 |
||
5.10.1 A Simple Current Source, 252 |
||
Summary, 259 Problems, 262 |
||
[ Return to top ] | ||
CHAPTER 6 - FIELD-EFFECT TRANSISTOR AMPLIFIERS | ||
6.0 Introduction, 277 6.1 Advantages and Disadvantages of FETs, 278 6.2 Metal-Oxide Semiconductor FET (MOSFET), 279 |
||
6.2.1 Enhancement-Mode MOSFET Terminal Characteristics, 281 6.2.2 Depletion-Mode MOSFET, 284 6.2.3 Large-Signal Equivalent Circuit, 287 6.2.4 Small-Signal Model of MOSFET, 287 |
||
6.3 Junction Field-Effect Transistor (JFET), 290 | ||
6.3.1 JFET Gate-to-Source Voltage Variation, 293 6.3.2 JFET Transfer Characteristics, 293 6.3.3 JFET Small-Signal ac Model, 296 |
||
6.4 FET Amplifier Configurations and Biasing, 299 | ||
6.4.1 Discrete-Component MOSFET Biasing, 299 | ||
6.5 MOSFET Integrated Circuits, 302 | ||
6.5.1 Biasing of MOSFET Integrated Circuits, 303 6.5.2 Body Effect, 305 |
||
6.6 Comparison of MOSFET to JFET, 306 6.7 FET Models for Computer Simulations, 308 6.8 FET Amplifiers - Canonical Configurations, 312 6.9 FET Amplifier Analysis, 314 |
||
6.9.1 The CS (and Source Resistor) Amplifier, 314 6.9.2 The CG Amplifier, 319 6.9.3 The CD (SF) Amplifier, 323 |
||
6.10 FET Amplifier Design, 326 | ||
6.10.1 The CS Amplifier, 326 6.10.2 The CD Amplifier, 336 6.10.3 The SF Bootstrap Amplifier, 340 |
||
6.11 Other Devices, 343 | ||
6.11.1 Metal Semiconductor Barrier Junction Transistor, 343 6.11.2 VMOSFET, 344 6.10.3 Other MOS Devices, 344 |
||
Summary, 345 Problems, 346 |
||
[ Return to top ] | ||
CHAPTER 7 - BIAS STABILITY OF TRANSISTOR AMPLIFIERS | ||
7.0 Introduction, 358 7.1 Types of Biasing, 358 |
||
7.1.1 Current Feedback Biasing, 359 7.1.2 Voltage and Current Biasing, 360 |
||
7.2 Effects of Parameter Changes - Bias Stability, 362 | ||
7.2.1 CE Configuration, 363 7.2.2 EF Configuration, 369 |
||
7.3 Diode Compensation, 372 7.4 Designing for BJT Amplifier Bias Stability, 374 7.5 FET Temperature Effects, 375 7.6 Reducing Temperature Variations, 377 Summary, 379 Problems, 380 |
||
[ Return to top ] | ||
CHAPTER 8 - POWER AMPLIFIERS AND POWER SUPPLIES | ||
8.0 Introduction, 384 8.1 Classes of Amplifiers, 384 |
||
8.1.1 Class-A Operation, 385 8.1.2 Class-B Operation, 385 8.1.3 Class-AB Operation, 387 8.1.4 Class-C Operation, 388 |
||
8.2 Power Amplifier Circuits - Class-A Operation, 389 | ||
8.2.1 Inductively-Coupled Amplifier, 389 8.2.2 Transformer-Coupled Power Amplifier, 391 |
||
8.3 Power Amplifier Circuits - Class-B Operation, 395 | ||
8.3.1 Complementary Symmetry Class-B and -AB Power Amplifier, 395 8.3.2 Diode-Compensated Complementary-Symmetry Class-B Power Amps (CSDC), 398 8.3.3 Power Calculations for Class-B Push-Pull Amplifier, 401 |
||
8.4 Darlington Circuit, 408 8.5 Power Supply Using Power Transistors, 413 |
||
8.5.1 Power Supply Using Discrete Components, 413 8.5.2 Power Supply Using IC Regulator (Three-Terminal Regulator), 417 8.5.3 Power Supply Using Three-Terminal Adjustable Regulator, 421 8.5.4 Higher-Current Regulator, 422 |
||
8.6 Switching Regulators, 423 | ||
8.6.1 Efficiency of Switching Regulators, 425 | ||
Summary, 425 Problems, 426 |
||
[ Return to top ] | ||
CHAPTER 9 - PRACTICAL OPERATIONAL AMPLIFIERS | ||
9.0 Introduction, 437 9.1 Differential Amplifiers, 438 |
||
9.1.1 dc Transfer Characteristics, 438 9.1.2 Common-Mode and Differential-Mode Gains, 439 9.1.3 Differential Amplifier with Constant Current Source, 442 9.1.4 Differential Amplifier with Single-Ended Input and Output, 445 |
||
9.2 Level Shifters, 451 9.3 The Typical Op-Amp, 454 |
||
9.3.1 Packaging, 455 9.3.2 Power Requirements, 456 9.3.3 The 741 Op-Amp, 456 Bias Circuits, 457 Short Circuit Protection, 457 Input Stage, 458 Intermediate Stage, 458 Output Stage, 458 |
||
9.4 Manufacturers' Specifications, 459 9.5 Practical Op-Amps, 459 |
||
9.5.1 Open-Loop Voltage Gain (G), 460 9.5.2 Modified Op-Amp Model, 461 9.5.3 Input Offset Voltage (Vio), 461 9.5.4 Input Bias Current (Ibias), 463 9.5.5 Common-Mode Rejection, 467 9.5.6 Power Supply Rejection Ratio, 467 9.5.7 Output Resistance, 468 |
||
9.6 Computer Simulation of Op-Amp Circuits, 471 9.7 Non-Inverting Amplifier, 473 |
||
9.7.1 Input and Output Resistance, 473 |
||
9.8 Inverting Amplifier, 479 | ||
9.8.1 Input and Output Resistance, 479 9.8.2 Voltage Gain, 480 9.8.3 Multiple-Input Amplifiers, 482 |
||
9.9 Differential Summing, 485 9.10 Amplifiers with Balanced Inputs or Outputs, 489 9.11 Coupling Between Multiple Inputs, 492 9.12 Power Audio Op-Amps, 493 |
||
9.12.1 Bridge Power Op-Amp, 494 9.12.2 Intercom, 495 |
||
Summary, 496 Problems, 496 |
||
[ Return to top ] | ||
CHAPTER 10 - FREQUENCY BEHAVIOR OF TRANSISTOR AMPLIFIERS | ||
10.0 Introduction, 509 10.1 Low-Frequency Response of Amplifiers, 513 |
||
10.1.1 Low-Frequency Response of Emitter-Resistor Amplifier, 513 10.1.2 Design for a Given Frequency Characteristic, 518 10.1.3 Low-Frequency Response of Common-Emitter Amplifier, 522 10.1.4 Low-Frequency Response of Common-Source Amplifier, 525 10.1.5 Low-Frequency Response of Common-Base Amplifier, 528 10.1.6 Low-Frequency Response of Emitter-Follower Amplifier, 529 10.1.7 Low-Frequency Response of Source-Follower Amplifier, 530 |
||
10.2 High-Frequency Transistor Models, 532 | ||
10.2.1 Miller Theorem, 533 10.2.2 High-Frequency BJT Model, 534 10.2.3 High-Frequency FET Model, 537 |
||
10.3 High-Frequency Response of Amplifiers, 538 | ||
10.3.1 High-Frequency Response of Common-Emitter Amplifier, 538 10.3.2 High-Frequency Response of Common-Source Amplifier, 542 10.3.3 High-Frequency Response of Common-Base Amplifier, 544 10.3.4 High-Frequency Response of Emitter-Follower Amplifier, 546 10.3.5 High-Frequency Response of Common-Drain(SF) Amplifier, 548 10.3.6 Cascode Amplifiers, 549 |
||
10.4 High-Frequency Amplifier Design, 550 10.5 Frequency Response of Op-Amp Circuits, 550 |
||
10.5.1 Open-Loop Op-Amp Response554 10.5.2 Phase Shift, 557 10.5.3 Slew Rate, 557 10.5.4 Designing Amplifiers Using Multiple Op-Amps, 560 10.5.5 101 Amplifier, 567 |
||
Summary, 570 Problems, 571 |
||
[ Return to top ] | ||
CHAPTER 11 - FEEDBACK AND STABILITY | ||
11.0 Introduction, 585 11.1 Feedback Amplifier Considerations, 586 11.2 Types of Feedback, 587 11.3 Feedback Amplifiers, 588 |
||
11.3.1 Current Feedback - Voltage Subtraction for Discrete Amplifiers, 588 11.3.2 Voltage Feedback - Current Subtraction for a Discrete Amplifiers, 592 |
||
11.4 Multistage Feedback Amplifiers, 594 11.5 Feedback in Operational Amplifiers, 595 11.6 Stability of Feedback Amplifiers, 599 |
||
11.6.1 System Stability and Frequency Response, 601 11.6.2 Bode Plots and System Stability, 605 |
||
11.7 Frequency Response - Feedback Amplifier, 610 | ||
11.7.1 Single-Pole Amplifier, 610 11.7.2 Two-Pole Amplifier, 611 |
||
11.8 Design of a Three-Pole Amplifier With Lead Equalizer, 617 11.9 Phase-Lag Equalizer, 623 11.10 Effects of Capacitive Loading, 624 11.11 Oscillators, 625 |
||
11.11.1 The Colpitts and Hartley Oscillators, 625 11.11.2 The Wien Bridge Oscillator, 626 11.11.3 The Phase Shift Oscillator, 628 11.11.4 The Crystal Oscillator, 629 11.11.5 Touch-Tone Generator, 631 |
||
Summary, 631 Problems, 633 |
||
[ Return to top ] | ||
CHAPTER 12 - ACTIVE FILTERS | ||
12.0 Introduction, 641 12.1 Integrators and Differentiators, 641 12.2 Active Network Design, 645 12.3 Active Filters, 648 |
||
12.3.1 Filter Properties and Classification, 649 12.3.2 First-Order Active Filters, 655 |
||
12.4 Single Amplifier - General Type, 666 12.5 Classical Analog Filters, 668 |
||
12.5.1 Butterworth Filters, 669 12.5.2 Chebyshev Filters, 672 |
||
12.6 Transformations, 674 | ||
12.6.1 Low-Pass to High-Pass Transformation, 674 12.6.2 Low-Pass to Band-Pass Transformation, 675 |
||
12.7 Design of Butterworth and Chebyshev Filters, 676 | ||
12.7.1 Low-Pass Filter Design, 677 12.7.2 Filter Order, 677 12.7.3 Parameter Scale Factor, 680 12.7.4 High-Pass Filter, 688 12.7.5 Band-Pass and Band-Stop Filter Design, 690 |
||
12.8 Integrated Circuit Filters, 694 | ||
12.8.1 Switched-Capacitor Filters, 695 12.8.2 Sixth-Order Switched-Capacitor Butterworth Low-Pass Filter, 697 |
||
12.9 Concluding Remarks, 699 Summary, 699 Problems, 700 |
||
[ Return to top ] | ||
CHAPTER 13 - QUASI-LINEAR CIRCUITS | ||
13.0 Introduction, 706 13.1 Rectifiers, 706 13.2 Feedback Limiters, 717 13.3 Comparators, 731 13.4 Schmitt Triggers, 735 |
||
13.4.1 Schmitt Triggers with Limiters, 738 13.4.2 Integrated Circuit Schmitt Trigger, 744 |
||
13.5 Conversion Between Analog and Digital, 746 | ||
13.5.1 Digital-to-Analog Converter, 746 13.5.2 Analog-to-Digital Converter, 747 |
||
Summary, 751 Problems, 752 |
||
[ Return to top ] | ||
CHAPTER 14 - PULSED WAVEFORMS AND TIMING CIRCUITS | ||
14.0 Introduction, 760 14.1 High-Pass RC Network, 762 |
||
14.1.1 Steady-State Response of High-Pass Network to Pulse Train, 766 | ||
14.2 Steady-State Response Low-Pass RC Network to Pulse Train, 771 14.3 Diodes, 777 |
||
14.3.1 Steady-State Response of Diode Circuit to Pulse Train, 777 | ||
14.4 Trigger Circuits, 781 | ||
14.4.1 Pulse Train Response, 782 | ||
14.5 The 555 Timer, 783 | ||
14.5.1 The Relaxation Oscillator, 784 14.5.2 The 555 as an Oscillator, 787 14.5.3 The 555 as a Monostable Circuit, 794 |
||
Summary, 796 Problems, 797 |
||
[ Return to top ] | ||
CHAPTER 15 - DIGITAL LOGIC FAMILIES | ||
15.0 Introduction, 805 15.1 Basic Concepts of Digital Logic, 805 |
||
15.1.1 State Definitions - Positive and Negative Logic, 806 15.1.2 Time-Independent or Unclocked Logic, 807 15.1.3 Time-Dependent or Clocked Logic, 807 15.1.4 Elementary Logic Functions, 807 15.1.5 Boolean Algebra, 811 |
||
15.2 IC Construction and Packaging, 812 15.3 Practical Considerations in Digital Design, 814 15.4 Digital Circuit Characteristics of BJTs, 817 15.5 Bipolar Logic Families, 818 15.6 Transistor-Transistor Logic (TTL), 818 |
||
15.6.1 Open Collector Configurations, 820 15.6.2 Active Pull Up, 823 15.6.3 H-TTL and LP-TTL Gates, 828 15.6.4 Schottky TTL Gates, 828 15.6.5 Tri-State Gates, 829 15.6.6 Device Listings, 831 |
||
15.7 Emitter-Coupled Logic (ECL), 832 | ||
15.7.1 Device Listings, 834 | ||
15.8 Digital Circuit Characteristics of FETs, 835 | ||
15.8.1 The n-Channel Enhancement MOSFET, 835 15.8.2 The p-Channel Enhancement MOSFET, 835 |
||
15.9 FET Transistor Families, 836 | ||
15.9.1 n-Channel MOS, 836 15.9.2 p-Channel MOS, 836 |
||
15.10 Complementary MOS (CMOS), 837 | ||
15.10.1 CMOS Analog Switch, 841 15.10.2 CMOS Device Listings and Usage Rules, 843 |
||
15.11 Comparison of Logic Families, 845 Summary, 847 Problems, 848 |
||
[ Return to top ] | ||
CHAPTER 16 - DIGITAL INTEGRATED CIRCUITS | ||
16.0 Introduction, 856 16.1 Decoders and Encoders, 857 |
||
16.1.1 Data Selector/Multiplexer, 860 16.1.2 Keyboard Encoders/Decoders, 862 16.1.3 Parity Generators/Checkers, 864 |
||
16.2 Drivers and Associated Systems, 864 | ||
16.2.1 The Liquid Crystal Display (LCD), 867 | ||
16.3 Flip-Flops, Latches, and Shift Registers, 868 | ||
16.3.1 Flip-Flops, 870 16.3.2 Latches and Memories, 875 16.3.3 Shift Registers, 877 |
||
16.4 Counters, 879 | ||
16.4.1 Frequency Measurement, 886 | ||
16.5 Clocks, 889 | ||
16.5.1 Voltage Controlled Oscillator, 889 | ||
16.6 Memories, 892 | ||
16.6.1 Serial Memories, 892 16.6.2 Random Access Memory (RAM), 895 16.6.3 ROMs and PROMs, 896 16.6.4 EPROMs, 897 |
||
16.7 More Complex Circuits, 899 | ||
16.7.1 Arithmetic Logic Unit (ALU), 899 16.7.2 Full Adders, 900 16.7.3 Look-Ahead Carry Generators, 900 16.7.4 Magnitude Comparator, 902 |
||
16.8 Programmable Array Logic (PAL), 903 16.9 Introduction to Problems, 903 |
||
16.9.1 Generating Random Numbers, 904 16.9.2 Measurement of Mechanical Angle of Velocity, 904 16.9.3 The Hall-Effect Switch, 905 16.9.4 Use of Timing Windows, 906 |
||
16.10 Concluding Remarks, 907 Problems, 908 |
||
[ Return to top ] | ||
APPENDICES A. Micro-Cap and SPICE, 929 B. Standard Component Values, 944 C. Manufacturers' Data Sheets, 946 D. Answer to Selected Problems , 985 |